
New Developments in an Agile World:
Drafting Software Development Agreements

By: Paul H. Arne1,2

A few months before this article was prepared, a group of senior IT professionals from
some of the largest companies in Atlanta3 gathered together over dinner to discuss issues that are
common to large IT organizations. This was the first such meeting, with about 20-25 companies
represented. The CIOs who organized the meeting hoped that this would be the first of many
such events. The first ever discussion topic? Agile software development. This group has now
gathered a second time to discuss a different topic. At the end of that discussion, the audience
was asked about topics for the third meeting. The overwhelming response was Agile software
development, once again. There’s a lot of interest in Agile development.

If you are an attorney who drafts, negotiates or reviews software development
agreements, you need to know about Agile. If you haven’t already been brought into a
development transaction involving Agile software development, you will. The use of Agile
software development principles may change the way your software development agreements
should be drafted.

Software Development Generally

Waterfall Approach

Generally

Traditional software development is often described as “waterfall” development.
The basic components of waterfall development reflect a sequential approach to development.
Generally speaking, they include the following processes, to be completed in order: conception,
analysis (including requirements gathering), design, construction, testing, implementation,
production use, and maintenance.4 Each process flows to the next one, hence the term
“waterfall.” This process was derived from more traditional disciplines for making things, such
as manufacturing or construction. Inherent in this approach is a substantial attempt to determine
as fully as possible what will be built before construction commences. One can see how
important this principle would be when constructing a building.

Under waterfall development, changes of plans are generally discouraged and
should be given special and serious review and scoping before the change is actually
implemented. This places a huge emphasis on getting the design process right.

1 Paul is the chair of the Technology Transactions Group of Morris, Manning & Martin, L.L.P. This article does not
create an attorney/client relationship with you and does not provide specific legal advice to you or your company.
Certain legal concepts have not been fully developed and certain legal issues have been stated as fact for which
arguments can be made to the contrary, due to space constraints. It is provided for educational purposes only.
2 Copyright © Paul H. Arne, 2013. All rights reserved. The author wishes to thank Mike Cottmeyer for his insights
into Agile development, especially for large organizations. Mr. Cottmeyer is the CEO of LeadingAgile, LLC, a
company devoted to assisting large organizations transition to Agile development methodologies, including training,
coaching and strategic consulting in portfolio management, project management, and transformation. Also, special
thanks to Austin B. Mills for his assistance in preparing this article.
3 Most of these companies have annual revenues in excess of $100 million per year.
4 See Wikipedia, Waterfall model, http://en.wikipedia.org/wiki/Waterfall_model (as of October 12, 2013, 16:45
EST).

 -2-

Very thoughtful and useful techniques have been developed to help organizations
figure out what software features and functionality should be built, including stakeholder
identification, stakeholder interviews, visioning, brainstorming, naturalistic observation,
prototyping, focus groups, and storyboarding. However, requirements gathering and waterfall
software development have at least two inherent problems.

• It is hard for human beings to describe what they need when they haven’t seen it
before. Few people could have envisioned an iPod’s interface before actually
seeing it.

• There is a lag between the time something is determined to be needed and the
time it is delivered. Changing technologies or business circumstances arising
between the completion of specifications and delivery may result in changed
needs.

Why this is important: Success Rates

Success rates for software development are somewhat difficult to come by.
However, the most well-known keeper of these kinds of statistics is The Standish Group. On a
regular basis, The Standish Group publishes its “Chaos Report,” which is a survey of the success,
or not, of IT projects.

Historically, these reports are positively gloomy. For example, in 1995, The
Standish Group received survey responses from 365 organizations, representing 8,380 projects.5
Here are the success rates:6

Project Resolution Percentage

Type 1: Project success 16.2%

Type 2: Project challenged:
Project completed, but it was over budget, over time, or
delivered less functionality than originally planned

52.7%

Type 3: Project cancelled 31.1%

These are scary statistics for IT organizations. As can be seen, cancelled projects
were about twice the number of successful projects; over half missed deadlines, were over

5 See The Standish Group International, Inc., The Chaos Report (1995),
http://www.csus.edu/indiv/v/velianitis/161/ChaosReport.pdf.
6 Id. at 3.

 -3-

budget, or were delivered without requested functionality. While this author has no industry
statistics on this issue, anecdotally — after discussions with the IT litigators in his firm — it
should be of little surprise that some of the most frequent disputes in technology are those
involving software development relationships.

Faced with these statistics, one can also see how important is it to have
development agreements that help manage the development process — especially in times of
trouble — and manage disputes.

The Standish Group also asked respondents to identify the factors that caused IT
projects to be “challenged” (i.e., over time, over budget and/or missing functionality). Of the
factors identified, 51.8% of respondents identified factors that relate to the difficulty of
determining requirements or changing needs.7 There seems to be little doubt that human nature
and the inexorable pace of technology and business are at odds with some of the fundamental
organizing principles of waterfall software development.

The Case for Agile Development

Before getting into what Agile software development is, let’s see why it is important.

Success Rates

The Chaos report for 20108 showed the following, based on projects from 1994
through 2008:

7 These response categories were “lack of user input,” “incomplete requirements and specifications,” “changing
requirements and specifications,” “unrealistic expectations,” “unclear objectives,” and “new technology.” Id. at 5.
8 See The Standish Group International, Inc., Chaos Summary for 2010 (2010),
http://insyght.com.au/special/2010CHAOSSummary.pdf.

0%

10%

20%

30%

40%

50%

60%

Successful Challenged Failed

43% 45%

12%

26%

59%

15%

Agile

Waterfall

 -4-

One can see from the chart that the use of Agile development methodologies were
considerably more successful on average than waterfall methodologies.

From July 22 until November 1, 2011, a different research group9 surveyed individuals
from various competencies within the software development community. 6,042 individuals
responded.10 The median size of respondent’s software organizations was 100 personnel.11 The
respondents reported that 80% of their organizations had adopted Agile management techniques
in their organization.12 Sixty percent indicated that over half of their companies’ software
projects are Agile-based.13 Comparing Agile-based development projects with prior
methodologies used by their companies, between 71% and 84% of respondents indicated that
their Agile-based projects (i) increased their ability to manage changing priorities (84%), (ii)
improved project visibility (77%), (iii) increased productivity (75%), (iv) improved team morale
(72%), and (v) sped time to market (71%).14

Not surprisingly, there is a lot of interest in Agile development at the moment.

What Is Agile Software Development?

The name, “Agile,” can be traced back to a single event, in February, 2001.15 While the
name grew out of that particular event, programming styles that are consistent with the principles
of Agile have been around for much longer. Examples include software development
methodologies called “Crystal Clear,” “Extreme Programming (or “XP”),” “Rational Unified
Process,” “Dynamic Systems Development Method” (or “DSDM”), “Scrum,” “Adaptive
Software Development,” and “Feature-Driven Development.”16 Many of the listed programming
techniques are now treated as subsets of Agile.

Out of that event came the “Manifesto for Agile Software Development,” set forth below
in its entirety.17

9 The survey organization was Analysis.Net Research. The survey was sponsored by VersionOne, which is the
provider of an Agile development management tool. Please consider the source of sponsorship when reviewing the
statistics; however, some of the survey results are compelling. See VersionOne Inc., State of Agile Survey, 2011, 6th
Annual (2012), http://www.versionone.com/pdf/2011_State_of_Agile_Development_Survey_Results.pdf.
10 Id.
11 Id. at 1.
12 Id. at 2.
13 Id.
14 Id. at 7.
15 See Wikipedia, Agile software development, http://en.wikipedia.org/wiki/Agile_software_development
(subheading “Agile Manifesto”) (as of October 12, 2013, 17:12 EST). Seventeen software developers met at a resort
in Snowbird, Utah to discuss lightweight development methods.
16 Id.
17 Manifesto for Agile Software Development, http://agilemanifesto.org/ (last visited October 12, 2013).

 -5-

We are uncovering better ways of developing
software by doing it and helping others do it.
Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation

Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on
the right, we value the items on the left more.

Another result of this meeting was a statement of principles18, which is set forth in this
article as Exhibit A.

Note the distinct lack of the following as objectives of Agile: predictability of timing,
predictability of cost, and clear advance determination of what functionality is to be developed.

Generally, Agile methodologies results in the delivery of working software at relatively
short intervals — as often as two weeks. These intervals are frequently called “sprints.” Teams
of developers must therefore contain all disciplines necessary to deliver working code. Agile
teams will normally be staffed with architects/designers, programmers, and testers.

Industry Trends Point to Agile

Another force that moves software development towards Agile methodologies is the
changing methods of how software is being delivered — specifically, software as a service.

Traditionally, software was delivered and operated on computers owned or controlled by
the licensee. This means that delivery of major upgrades to software tend to be major events.
Each new upgrade carries a significant cost to both the licensor and licensee. On the licensor
side, software must be tested against multiple hardware configurations. Interfaces may also need
to be tested. Maintenance and support personnel must have the capability to support multiple
versions of the software simultaneously, because not all customers will migrate to the new
version at the same time. On the licensee side, new versions of software can require extensive
testing before introduction into a production environment, as well as potentially user training.
Because of these costs, based on the author’s experience, major new versions of software tend to
be delivered no more than about twice a year.

When software functionality is delivered as a service over the Internet, these dynamics
can change. First, software has to be tested against only one hardware environment. Second,

18 Principles behind the Agile Manifesto, http://agilemanifesto.org/principles.html (last visited October 12, 2013).

 -6-

there is no compelling reason to not introduce new functionality on an incremental basis as it is
completed. With incremental change, training can occur more as an ongoing process rather than
being driven by major releases. Support and maintenance personnel frequently only have to deal
with one version of the software for all customers.

Because of the above, release cycles for new functionality can be greatly reduced, to as
many as a few times a month. New software functionality no longer has to be such a major
event. This new and growing model for the delivery of software functionality lends itself to a
more iterative software development process. Therefore, certain industry trends favor the
adoption of Agile methodologies, at least for some kinds of software.

Software Development Agreements

Purpose of Agreements

It goes without saying that software development agreements serve the same
functions as other contracts. Normal contract functions generally include the following:

• Certainty. Identifying clearly what the various parties are getting, when, and at
what price.

• Roles. Establishing which party is responsible for what activities.

• Allocation of Risk. If things go badly, then the contract should state the
responsibilities of the parties and which party is responsible for the
consequences of the problem.

• Help in times of trouble. When problems or disputes arise, it can be very
helpful to have a process in the contract that enables dispute resolution short of
contract termination or litigation.

Development Agreements

Software development relationships usually involve, or should involve, significant
interactions between the parties. As a result of these interactions, there are some other objectives
in software development agreements that are not as necessary in other contractual relationships.
For example, guidance in the agreement about how the parties will interact with each other
during the project can be helpful to set expectations and define responsibilities, and thereby
reduce uncertainty and risk. Putting processes into these agreements can help manage risk. The
following terms, among others, can be used in software development agreements to guide the
parties, catch and address problems early, assign responsibilities, and manage risk.

 -7-

• Development of Specifications. Because software development agreements
are routinely entered into before the parties know specifically what is being
created, processes are often built into the agreement related to determining
requirements, setting timeframes, and providing for the review and approval
of the specifications.

• Establishment of Price. At times, the cost will not be known, either, so there
may be a need to provide for a mechanism to determine how much the
developer will be paid and when.

• Management and Decisions Making. Contracts for large scale development
projects often define the organizational structures for managing projects as
well as identifying who makes what decisions during the course of the project.

• Milestones. Software development agreements frequently call for the
development and identification of various milestones, and if these
development milestones are missed, what the responsibilities of the parties
are.

• Progress Reporting. Catching problems early is often important to the
ultimate success of a project. Provisions related to what is reported and when,
as well as the obligations of the parties based on the substance of the reports,
are often found in software development agreements.

• Acceptance. The acceptance process normally provides for (i) how completed
work is reviewed and confirmed to be in order, (ii) what the responsibilities of
the parties are if the completed work is found to be inadequate, and (iii) what
the responsibilities of the parties are if the completed work complies with the
requirements of the contract.

• Personnel. Frequently, software development agreements will provide for
how and under what circumstances developer personnel may be added to or
eliminated from the development team. For example, it is not unusual to have
provisions that prevent key personnel from being removed from the project
absent unusual circumstances.

• Changing Plans. The process of requesting, scoping and introducing change
into a project is normally addressed.

Describing these processes in software development agreements can help manage
the risks.

 -8-

Using Agile Development Features to Manage the Risk

Some features of Agile development are problematic to attorneys who rightfully
seek certainty and allocation of risk. When faced with the need to prepare a software
development agreement — a kind of agreement that is already known to be fraught with risk —
image your client not being able to tell you (i) what is to be developed, (ii) how much it will cost,
and (iii) how long it will take. On top of that, note in the Agile Manifesto a natural bias against
contracts generally (“Customer collaboration over contract negotiation”). As an attorney, you
may get business pushback as a matter of principle.19

However, there are some key features of Agile that help reduce the risk of
development projects. These features may be useful to consider when drafting a corresponding
software development agreement.

Agile embraces changes in scope. This uncertainty, however, suggests that an
ongoing process will exist for evaluating and determining the scope. Therefore, consider
identifying what that process is and build into the agreement the requirement of significant
participation in scope decisions by both parties.

Also, some kind of scope, anticipated resources, number of sprints, and rough
timeline still should exist at the beginning of a project. Therefore, consider making sure that at
least what is known about scope, timing and cost are made a part of the agreement.

It goes without saying that one should contemplate in the agreement how changes
to scope are handled in terms of development, time and money.

It is also important for the attorney to put Agile development in context.
Admittedly, in Agile projects it may be less easy to state in a contract specifically what is being
developed, at what cost, and how long it will take. However, if over 50% of the time the reasons
cited for projects being over time, over budget or missing functionality relate to the difficulty of
determining requirements or changing needs, how much risk are you reducing by insisting on
certainty of scope at the beginning of a project? Also, if statistically software development using
Agile methodologies is more likely to be successful, why would an attorney resist it just because
it is less “certain”?

Agile encourages close collaboration between the business unit and the software
developer. This means that there will be one or more processes — structured, informal or both

19 In discussions with Mr. Cottmeyer, who knows some of the people who attended the meeting where the
Manifesto for Agile Software Development was developed, he indicated that those in attendance were focusing on
“contracts” that occur between IT staff and business units within companies and not relationships with outside
software developers.

 -9-

— that are going to be a part of an Agile development project, relating to business and developer
collaboration. Therefore, consider building at least some of these processes into the agreement.

Agile emphasizes the delivery of working software at relatively short intervals
throughout the project. If the developer is to provide working software at regular and relatively
short intervals during the project, doesn’t this reduce the overall risk of the project? There are at
least two important features of the regular delivery of working code.

• First, as long as a business can keep what has been built even upon an early
termination, then the business may have less risk of having to start all over again.

• Second, the failure to deliver working code regularly can be a key way to
determine whether something is going wrong in the development process. If the
code doesn’t work, doesn’t have the agreed features, or is buggy, then maybe
rights should be triggered to get out of the relationship.

Therefore, consider building into the development agreement the testing and
evaluation of software by both parties as a part of each sprint. Also, consider whether there
should be a right to terminate at the end of a sprint if the code isn’t up to snuff or for
convenience.

One More Complication

Unfortunately, everyone seems to have their own interpretation of what “Agile”
development really means. Some developers are more pure in their approach to Agile, while
others are clearly not. In the author’s practice, he has yet to see two “Agile” development
projects that actually used the same development processes. Therefore, it is important to
recognize that the “Agile” methodologies used by one company will not necessarily match
another. Due diligence into specifically what is done is an important part of getting the contract
right.

Conclusions

Agile development can be uncomfortable to attorneys because of a lack of certainty.
However, given success rates of Agile projects compared with other methodologies, the use of
Agile seems to be growing. Fortunately, some features of traditional development projects (such
as controls related to personnel) are still available to assist with helping to improve the chances
for success. Coupled with a sensitivity to features of Agile that are also useful in connection
with writing a development contract, lawyers are still in a position to provide value by drafting a
document that reduces risk and provides a guide to the parties that may increase the chances for
success.

Exhibit A
Principles Behind the Agile Manifesto

We follow these principles:

Our highest priority is to satisfy the customer
through early and continuous delivery

of valuable software.

Welcome changing requirements, even late in
development. Agile processes harness change for

the customer's competitive advantage.

Deliver working software frequently, from a
couple of weeks to a couple of months, with a

preference to the shorter timescale.

Business people and developers must work
together daily throughout the project.

Build projects around motivated individuals.
Give them the environment and support they need,

and trust them to get the job done.

The most efficient and effective method of
conveying information to and within a development

team is face-to-face conversation.

Working software is the primary measure of progress.

Agile processes promote sustainable development.
The sponsors, developers, and users should be able

to maintain a constant pace indefinitely.

Continuous attention to technical excellence
and good design enhances agility.

Simplicity--the art of maximizing the amount
of work not done--is essential.

The best architectures, requirements, and designs
emerge from self-organizing teams.

At regular intervals, the team reflects on how
to become more effective, then tunes and adjusts

its behavior accordingly.

