

White Paper:

Open Source Software Licenses:
Perspectives of the End User
and the Software Developer

By: Paul H. Arne
Morris, Manning & Martin, L.L.P.

Copyright © 2004
Morris, Manning & Martin, L.L.P.

All rights reserved

Table of Contents

History of Open Source ... 2

Open Source Licenses Generally .. 3
Copyright Issues ... 3
Contract Considerations.. 4
Limitation of Liability Clause... 5
Other Implied Warranties ... 6
UCITA .. 6
Parties to License .. 6

Specific Open Source Licenses.. 7
GNU General Public License (GPL) .. 7

General Conclusions.. 7
The GPL Generally.. 7
Modifications and Distribution.. 8
What’s a Modification? ... 10
How Modifications are Handled.. 10
Handling of API’s and Other Interfaces.. 11
Handling Patent (and Other) IP Infringement Issues.. 12
Handling Certain Countries’ Contrary Laws .. 12
Other Provisions .. 12
Conclusions.. 13

Lesser General Public License (LGPL) (Version 2.1).. 13
General Conclusions.. 13
The LGPL Generally.. 13
Modifications to the Library Itself ... 14
Use of the Library .. 15
Other Provisions .. 16
Conclusions.. 16

Berkeley Software Distribution (BSD)License... 16
The MIT License .. 17
Apache Software License v2.0 ... 17

Infringement Liability ... 18
Chances of Infringing Materials Being Involved.. 19
Risk of Getting Caught ... 19
Likelihood of Action Against End User or Developer ... 19
Who Will Defend and Indemnify?.. 20
SCO v. IBM .. 21
Monetizing the Risk; An Economic Analysis... 21

Other Issues .. 22
Control .. 22
Import Restrictions ... 23

Conclusion .. 23

Open Source Software Licenses:
Perspectives of the End User
and the Software Developer1

By: Paul H. Arne2,3
Morris, Manning & Martin, L.L.P.

Fear, uncertainty, and doubt are major factors when a company first considers
using open source software. Programmers tend to love open source software. They say
it’s stable, cheap, and available online. They may already be contributors to the open
source movement. It saves them time. It is much less expensive than other alternatives.
Yet CIO’s and business executives hear other stories that give them pause about using
open source software. They hear that some companies are very publicly opposed to it.
They hear of lawsuits and threatened lawsuits. Frequently, attorneys within companies
are opposed to the use of open source software for reasons that are heartfelt and
seemingly logical.

This white paper reduces the “FUD” factor by clarifying the legal issues
associated with open source licensing. In most ways, open source licenses are just like
any other license to software. With an understanding of how intellectual property laws
work and how software is built, one reads the license agreement to determine what a
licensee can and cannot do, what the licensee is required or not required to do, and how
the risks have been allocated. There are some activities for which companies should not
use some open source software. In other situations, many companies will decide that the
use of open source software is perfectly acceptable.

This white paper is directed to two audiences: (i) those who want to use open
source software with little or no modification and only for internal use (“End Users”) and
(ii) those software developers who want to use open source software as a part of a
software package that will be sold4 to others (“Developers”; Developers are frequently
referred to as Independent Software Vendors (or ISVs), system integrators, value added
resellers, original equipment manufacturers, and independent contractors, among other
names). Some of the issues discussed in this white paper are legally technical (after all it
is a white paper), but the risks identified or clarified are not technical — they’re just
business risks. If you get bogged down in the text, just skip a few sentences.

1 This document does not create an attorney/client relationship with you and does not provide specific legal
advice to you or your company. Certain legal concepts have not been fully developed and certain legal
issues have been stated as fact for which arguments can be made to the contrary, due to space constraints.
It is provided for educational purposes only.
2 Paul Arne is a partner with Morris, Manning & Martin, and chairs its Open Source practice group.
3 Special thanks to Lauren Sullins, who assisted with the research and writing of this white paper.
4 Technically, the software is licensed, not sold.

History of Open Source5

The open source movement got its start in the early 80’s with the development of
a “freeware” version of UNIX, known as GNU, developed by Richard Stallman.
Stallman was a strong advocate that software should be free.6 From that development
came the first open source license, the GNU General Public License, or “GPL.”

There is some brilliance to the design of the GPL. One might think that a free
software movement would seek to avoid copyright laws, the principal intellectual
property law that restricts the free use of software and allows its commercial exploitation.
Instead, the GPL uses the rights under copyright to enforce the goals of the free software
movement. Not surprisingly, Stallman refers to his licensing scheme as “copyleft.” It
really does turn normal copyright on its head.

Probably the most important development in the open source movement has been
the development of Linux, a popular open source operating system. Linus Torvalds, the
developer of the Linux kernel, used the GPL as the licensing scheme for Linux. In part
because the GPL, unlike many other open source licenses, requires modifications that are
distributed to be shared, source code and all, literally thousands7 of programmers have
been involved in writing, editing, and testing Linux. Linux has developed a well-
deserved reputation as being a very stable, inexpensive operating system platform that
can run desktops to supercomputers. In addition, the Linux community typically
responds quickly to changes in the landscape of computing, adding capabilities or drivers
rapidly after the introduction of the corresponding hardware.

Businesses have grown to provide services around Linux. In addition, a
significant number of other individuals and companies have adopted the open source
model to develop their products.8

It is important to note that open source is not a single movement or a single form
of software license. The Open Source Initiative9 lists approximately 50 different “open
source” licenses. These licenses vary significantly in their requirements. Therefore, it is
critical to obtain and actually read the license that governs the use, modification, and
distribution of the software in question.

5 For more detailed information about the origins and history of the open source movement, see
www.fsf.org/gnu/thegnuproject.html (the history of GNU), https://netfiles.uiuc.edu/rhasan/linux/ (the
history of Linux), and www.catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/ (a sweeping analysis
of the open source movement).
6 One of Mr. Stallman’s writings on this topic can be found at www.fsf.org/philosophy/shouldbefree.html.
7 “Published estimates range from several hundred to more than 40,000.” Essence of Distributed Work, the
Case of the Linux Kernel, by Jae Yun Moon and Lee Sproull,
www.firstmonday.org/issues/issue5_11/moon/index.html.
8 As of this writing, one Web site currently hosts over 83,000 open source software projects. See
www.sourceforge.net.
9 A non-profit organization that exists to promote open source. Among other things, OSI “certifies”
software licenses as being official open source licenses. Its Web site is at www.opensource.org.

2

http://www.fsf.org/gnu/thegnuproject.html
https://netfiles.uiuc.edu/rhasan/linux/
http://www.catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/
http://www.fsf.org/philosophy/shouldbefree.html
http://www.firstmonday.org/issues/issue5_11/moon/index.html
http://www.sourceforge.net/
http://www.opensource.org/

Open Source Licenses Generally

Some open source license agreements seem to have been drafted by engineers as
well as lawyers. These licenses can display a technical sophistication that usually does
not exist in run-of-the mill license agreements. Even for lawyers who practice regularly
in this field, understanding an open source license can be challenging. In addition, some
of the licenses do not follow conventions of tight legal drafting, giving rise to some
unnecessary uncertainty in the meaning of the licenses. Finally, because copyright law
generally and the concept of derivative works specifically are often used in open source
license agreements to dictate whether certain rights or obligations exist, a good
understanding of copyright law and what a derivative work is and is not can be important.

Copyright Issues

Copyright law gives specific rights to holders of copyrights. These
“exclusive” rights may be granted by license or sale to third parties at the discretion of
the copyright holder. The exclusive rights include the following:

• to make copies of the work,

• to prepare derivative works of the work, and

• to distribute the work.10

This legal structure is critically important to understand. It is the basis for
the sale of books, music, movies, and software. As long as the rights are appropriately
reserved by the copyright holder, the sale or license of a book, a CD, a DVD, or software
does not grant to the recipient any of the exclusive rights under copyright law,
specifically the right to make copies, to create derivative works, and to distribute11 the
work.

These concepts serve as the basis for some open source licenses. The
limitations stated in the open source license agreement are enforceable against a user,
even when the user doesn’t agree to the terms or manifest any intention to be bound,
because the rights that are enforced are copyrights, not contract rights. Because of the
exclusive rights granted to the copyright holder, a copyright holder can limit uses of the
software by simply not giving those rights to the recipient. A copyright holder can also
place conditions on the right to do certain things. Any use of the software beyond the
limits or without complying with the conditions set forth in the license exceeds the scope
of the licenses granted and is therefore a copyright infringement. In essence, limitations

10 17 U.S.C. § 106 (2004).
11 Note that the “first sale doctrine” allows the subsequent distribution of a copy of a work that is sold, not
licensed. This means that you can sell or give a copy of a book, CD or DVD to someone else, so long as
you don’t make copies. Preventing subsequent sale is the reason that software is licensed and not sold.
Examination of the first sale doctrine is beyond the scope of this white paper, as are other rights under
copyright that may relate to the rights of owners of copyrights and owners of copies of copyrighted works,
such as public performance rights.

3

of a license can be enforced without the necessity of an actual agreement by simply not
licensing those rights to the recipient or otherwise placing restrictions on certain rights.
This is exactly what happens with a book. You don’t need a contract with the author for
the author to prohibit your copying of the book; the author simply doesn’t give you that
right.

Generally, an open source license will place requirements on the user in
order for the user to have the right to copy, distribute, or create derivative works of the
software. There are a number of types of restrictions that can be found in open source
licenses. They include:

• Requirements regarding the placement of copyright notices on copies;

• Requirements that notices be given of modifications to the software;

• Requirements that the software either be or not be attributed to certain
authors;

• Requirements that certain disclaimers of liability be included in any
subsequent license;

• Requirements that certain limitations of damages be included in any
subsequent license;

• Requirements that the software and all modifications be distributed
only with the source code or an offer to provide the source code for
free, other than a copying fee; and

• Requirements that the object code be distributed for free or only for a
reasonable copying charge.

The last two requirements above, the distribution of modified source and
object code for only a copy fee, are normally what give companies the most concern.
This issue will be explored in more detail in the discussion of the GPL below. For the
reasons set forth in the GPL discussion, suffice it to say that these requirements are likely
to be of little concern to an End User, especially if the open source software isn’t
modified by the End User.

Contract Considerations

Most open source licenses contain other provisions that are harder to
characterize as some exclusive right that the copyright holder is retaining rather than
giving away. Examples of these include limitations of liability and disclaimers of
implied warranties, specifically the warranties of merchantability and fitness for purpose
implied in some contracts under the Uniform Commercial Code. It is harder to argue that
a limitation of liability is a limitation on the ability to make copies, create derivative
works, or distribute the software. Accordingly, in order to be enforceable, other laws

4

must probably be relied on other than copyright in order to render them enforceable.12
Contract law is the likely alternative.

It is not clear from the way open source software and their corresponding
licenses are frequently distributed that a binding contract actually exists.13 Having an
enforceable contract normally requires parties to actually agree to something;14 a contract
cannot be unilaterally imposed by one party on another. Typically, when open source
software is downloaded off of the Internet, the Web page lists the open source license by
name, without a link to its terms, without the text of the license being displayed, and
without requiring the downloading party to assent to the license at the time of the
download. Accordingly, there may be no manifestation of agreement or assent on the
part of the user that would be required to create a legally enforceable contract.15 This
suggests that provisions of open source licenses that aren’t self-executing in their
operation may not be enforceable.16

For an End User, this is not much of an issue. An End User would view
the unenforceability of a limitation of liability clause or disclaimer of warranties as a
good thing.

Developers are similarly helped rather than hindered. However,
Developers should consider this issue when they distribute the open source to a customer.
The simple solution for a Developer is to create an enforceable contract when it delivers
the open source, along with other Developer software. By incorporating certain
provisions of the open source license into an enforceable license, the Developer should be
able to avoid potential problems with the lack of enforceability of parts of the open
source license.

Limitation of Liability Clause

The disclaimers of liability in open source licenses typically disclaim all
damages, not just the more standard disclaimers of consequential and special damages.
One can argue that an otherwise valid contract is rendered invalid when one party has no

12 Where the scope of copyright law ends in this context is not clear. There may be situations where the
nature of the restriction may not be clearly a copyright-based limitation or a limitation requiring a contract
to be enforceable.
13 In certain seminars, representatives of the Free Software Foundation have indicated that the Free
Software Foundation Licenses (most notably the GPL and LGPL) are not contracts but are only licenses.
14 Restatement of Contracts, 2nd, §19. The point of this discussion is not to show without a doubt that a
contract does not exist; it is only to show that there is a potential argument that contract rights do not exist
under the circumstances of a typical download and use of open source software.
15 See, e.g., Specht v. Netscape Communs. Corp., 306 F.3d 17 (2d Cir. 2002), holding that there was no
mutual assent when the terms of the license governing the use of the software to be downloaded appeared
“below the fold” (i.e., requiring the user to scroll down the Web page).
16 This is easy to fix, however. As a part of the distribution process, making the receipt of a copy
conditioned on clicking an “I accept” button while having access to the terms of the license agreement
would likely do the trick. While there are a few additional requirements, in most countries it is not hard to
create an enforceable agreement entered into exclusively online.

5

right to damages for breaches of the agreement by the other party.17 This lack of
“mutuality” is another potential issue with most of the open source licenses. This
problem is the licensor’s problem, however, not the End User’s. It is nevertheless
something to consider when a Developer distributes open source software with its own
software.

Other Implied Warranties

There may be more implied warranties than merchantability and fitness for
purpose. There are plausible arguments that licenses of some software also come with
implied warranties of title and noninfringement. Not all open source licenses disclaim
these warranties. However, note that the absence of a valid disclaimer may help, and
certainly shouldn’t hurt, the End User and Developer. Developers should consider this
issue when licensing the open source software downstream.

UCITA

Virginia and Maryland have adopted the Uniform Computer Information
Transactions Act (“UCITA”). In UCITA, there are additional implied warranties that are
factored into software licenses. These warranties include the warranties of
noninfringement, noninterference, and system integration, as well as certain data-related
warranties. Generally, open source licenses do not disclaim these warranties.
Accordingly, they may be available to assert in connection with problems related to the
software where the governing law is Virginia or Maryland.18 Once again, the absence of
disclaimers of these warranties doesn’t hurt the End User and Developer; if anything, it
helps.

Parties to License

Because most open source software is developed by multiple people and
companies, determining who the licensor actually is can be difficult, if not impossible, to
determine. The open source licenses reviewed in this white paper do not contain
assignments of contributor’s intellectual property rights to a single organization, so
individual contributors may retain intellectual property rights to various parts.

The existence of multiple contributors and the lack of a central licensor
has at least a couple of ramifications. First, practically there may be no person or
organization that can sue an End User or Developer who violates the terms of an open
source license agreement.19 Second, there may be no one for an End User or Developer
to sue if that becomes necessary or appropriate.

17 See Sterling Computer Systems of Texas, Inc. v. Texas Pipe Bending Co., 507 S.W.2d 282 (Tex. Civ.
App. -- Houston [14th Dist.] 1974, writ ref'd); Spellman v. Lyons Petroleum, 709 S.W.2d. 295 (Tex. Civ.
App. –Houston [14th Dist.] 1986)
18 Virginia recently adopted amendments to UCITA that eliminated some warranties for “free software.”
19 Note that it is possible for a contributor to assign his or her intellectual property rights to the Free
Software Foundation. The Free Software foundation has also created software on its own, such as GNU.

6

Specific Open Source Licenses

GNU General Public License (GPL)

General Conclusions

The GPL is the most important open source license to understand,
simply because much open source software is licensed under it. Linux is licensed
under the GPL. As of this writing, the SourceForge Web site20 has over 38,000
software packages available for download that are licensed under the GPL.

Generally speaking, under the GPL any modifications of the code
that you create and distribute are required to be distributed to all others in source
code and object code form for only a fee for copying. Accordingly, and subject to
the qualifications discussed below, software licensed under the GPL can be great
for internal use only. Under normal circumstances, software licensed under the
GPL should not, and probably cannot legally, be used for development of
proprietary software for license to third parties for a license fee.

The GPL Generally

One of the most important features of the GPL is reflected in the
following license provisions: “Activities other than copying, distribution and
modification are not covered by this License [the GPL]; they are outside its
scope.” Despite being “outside the scope,” the next sentence contains what seems
to be a grant of the right to use the software (known as “Program” in the GPL).
“The act of running the Program is not restricted….” This language suggests that
the GPL gives the licensee the right to run the program in any way desired. There
are no limitations regarding the number of users, log-in IDs, seats, named users,
number of computers, kinds of computers, amount of data processed, etc.

In its general provisions, the GPL mentions restrictions on
copying, distribution, and modification. When specific requirements are
mentioned, however, they almost always address what happens upon distribution
or modification, or both, and not what happens upon copying. There are virtually
no provisions associated with copying the software outside of copying in
connection with distribution. The emphasis of the GPL is clearly on the
requirements related to distribution of modified copies of the software.

Section 1 of the GPL governs distributions of unmodified copies of
the software. While there are requirements regarding copyright notices,
disclaimers, providing copies of the GPL with the software and the like that must
be complied with, there are no restrictions that would seem to concern either an

The Free Software Foundation has apparently pursued some violators of the GNU, but these have not gone
to court. See www.fsf.org/philosophy/enforcing-gpl.html.
20 www.sourceforge.net.

7

http://www.fsf.org/philosophy/enforcing-gpl.html
http://www.sourceforge.net/

End User or Developer, as long as those entities do not want to make money on
selling the software subject to the GPL.

Modifications and Distribution

Section 2 of the GPL addresses modifications to the software. The
most important part of Section 2 provides, “You must cause any work that you
distribute or publish, that in whole or in part contains or is derived from the
Program or any part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.” Much of the rest of Section 2 addresses
what this quoted language means.

For an End User who merely uses the software without
modification, logically there can be no problem with this requirement. Indeed,
even if an End User makes modifications to the software, Section 2 only comes
into effect when there is a distribution or publication of the software. Internal use
of modified software would not seem to require the free licensing of the software
to third parties. Stated another way, there are no provisions in the GPL that
require distribution of modified software. Only when modified software is
distributed do requirements regarding free distribution and access to source come
into play.

There are two caveats to the above, however. Case law in the
software area makes clear that independent contractors of a licensee are not the
licensee for licensing purposes.21 Consequently, if your company obtains some of
its “employees” from an employment service that remains the actual employer,
engages consultants to work on projects, or otherwise uses 1099-type labor to
provide IT services, then the use of the software by those persons technically
might be considered a “distribution” under Section 2. If it is a “distribution,” then
under the GPL you must provide the software to them, in source and object code,
for distribution by them under the terms of the GPL. Therefore, even if you are
an End User, if you modify the software there may be a risk that you will be
legally required to allow your modification to become a part of the open source
community, freely useable by anyone for the asking.22

21 MAI Systems Corp. v. Peak Computer, Inc., 991 F.2d 511 (9th Cir. 1993).
22 This is actually a complicated issue. Section 2 of the GPL provides:

You may modify your copy or copies of the Program or any portion of it, thus forming a
work based on the Program, and copy and distribute such modifications or work under
the terms of Section 1 above, provided that you also meet all of these conditions:

b) You must cause any work that you distribute or publish, that in whole or in part
contains or is derived from the Program or any part thereof, to be licensed as a whole at
no charge to all third parties under the terms of this License. (emphasis supplied)

Because of MAI v. Peak, it is fairly clear that a distribution has occurred from a legal standpoint.

However, the FAQ to the GPL, also prepared by the Free Software Foundation, has the following to offer:

Q: Does the GPL allow me to develop a modified version under a nondisclosure
agreement?

8

The second caveat is a variation of the first. Subsidiaries aren’t the
licensee for licensing purposes, either. As a result, providing modified code to a
subsidiary, or other company within a controlled family of companies, may be
considered a distribution subject to the provisions of the GPL.23

These caveats point out issues that exist with most software
licenses, not just open source licenses. In the author’s practice, it is a rare
situation where a licensor’s form software license agreement allows 1099 labor to
use the software on behalf of a company that licenses the software. It is also a
rare situation where an IT department of any size doesn’t use 1099 labor. While
more standard licenses allow use of the software by related companies, it is still
unusual for a standard license prepared by a licensor to include this right.

Sophisticated end users seek to add these rights to software
licenses, principally because they are risks and because they allow the license
agreement to reflect what actually occurs in real life. Normally, licensors don’t
care about these technical issues, so they aren’t likely to sue over a technical
exceeding of the scope of the licenses even if these technicalities aren’t fixed in
the license agreement. It is not clear whether someone in the open source
community would use these issues as a basis to insist that the modifications
otherwise used exclusively internally by a company be disclosed to the public.

A: Yes. For instance, you can accept a contract to develop changes and agree not to
release your changes until the client says ok. This is permitted because in this case no
GPL-covered code is being distributed under an NDA.

You can also release your changes to the client under the GPL, but agree not to release
them to anyone else unless the client says ok. In this case, too, no GPL-covered code is
being distributed under an NDA, or under any additional restrictions.

The GPL would give the client the right to redistribute your version. In this scenario, the
client will probably choose not to exercise that right, but does have the right.

The FAQ also provides:

Q: If I know someone has a copy of a GPL-covered program, can I demand he give
me a copy?

A: No. The GPL gives him permission to make and redistribute copies of the
program if he chooses to do so. He also has the right not to redistribute the program, if
that is what he chooses.

From the foregoing, apparently the obligation to distribute source code without restriction applies only to
recipients (and therefore licensees) of the program subject to the GPL. Therefore, an independent
contractor could develop code using the GPL under nondisclosure and provide it to his or her company for
use and the company would not be obligated to distribute it.

However, the reverse seems not to be true. If the company shares the code with the independent contractor,
then the company would not be able to limit the independent contractor’s use of the code, even with a
nondisclosure agreement. This makes co-development situations problematical under the GPL.
23 This caveat is of lesser importance because a subsidiary probably won’t feel compelled to distribute the
modified open source software.

9

What’s a Modification?

To understand the implications of Section 2 of the GPL, an
understanding of the concept of derivative works is required. As stated above, the
right to create derivative works is one of the exclusive rights held by the owner of
a copyright. Whether a work is a derivative work of another is usually a question
of whether you started by copying another’s work. If your starting point is
someone else’s copyrighted work, either part of it or all of it, then almost without
exception you are creating a derivative work.24

How Modifications are Handled

Section 2 states that if you modify the software (and then distribute
it), then you are subject to the requirements of Section 2. These requirements
include the following:

� Providing a notice that the software has been changed and when;

� Distributing the modified software “as a whole at no charge to all
third parties” under the terms of the GPL; and

� Taking other actions in the event that certain operations
automatically occur when the software is loaded, such as providing
appropriate copyright notices on splash screens.

The GPL then takes three paragraphs to explain what is meant.
The explanation is quoted below, with the author’s explanation in brackets.

If identifiable sections of that work are not derived from the Program, and can be
reasonably considered independent and separate works in themselves [in other
words, if you separate portions of the work and those portions are not derivative
works of the Program], then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you distribute the
same sections as part of a whole [i.e., when the work as a whole remains a
derivative work] which is a work based on the Program, the distribution of the
whole must be on the terms of this License, whose permissions for other licensees
extend to the entire whole, and thus to each and every part regardless of who
wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you [i.e., when your work isn’t a derivative work of the

24 There are exceptions for short phrases, things that can only be expressed in a limited number of ways,
and other exceptions, but none of those exceptions really take away from the basic principle stated above.
See Pelt v. CBS, Inc., 1993 U.S. Dist. LEXIS 20464 (C.D. Cal. Oct. 29, 1993).

10

open source software]; rather, the intent is to exercise the right to control the
distribution of derivative or collective25 works based on the Program.

The GPL goes on to specify that distributing open source software
with your software on the same media, such as a volume on a hard drive or optical
disk, doesn’t make your software a derivative work or subject to the GPL.

Section 3 of the GPL provides requirements related to the
obligation to provide or offer to provide the source code of the software that is
subject to the GPL along with any distribution of the object code.

Handling of API’s and Other Interfaces

Software programs talk to each other. For example, in the event
that an application program wants to save a file to a hard disk, the application
program sends a command to the operating system software that in turn performs
that operation. In order for the operating system to save the file to disk, however,
the operating system must receive a command from the application software that
it can understand. Since it must be understood by the operating system, the form
of command must be dictated by the operating system. Frequently, this calling of
functionality from one program to another is mediated through information
known as an application program interface, or API. API’s are formalized
instructions for causing one program to use the functionality of another program.
There are less formal ways for one software program to cause another software
program to act, but the basic concept is that something in one program has to
invoke something that is already in the other program.

If software uses the API or other interface of open source software,
does the software become a derivative work of the open source software? This is
one of the unanswered questions of the GPL; there are no express provisions of
the GPL that address interfaces. Because the GPL does not answer this question
directly, we are left with the question whether copyright law provides the answer.
Under copyright law, there are no definitive answers, either. However, there are
cases suggesting that where interoperability is concerned, courts will look upon

25 The use of the phrase “collective works” is a troubling one. Collective works are different from
derivative works — both are terms used in the Copyright Act. An example of a “collective work” is a book
of short stories by different authors. Each author has a copyright to his or her individual contribution,
while the publisher has the copyright in the collective group of short stories, subject to the rights of each
individual author to authorize the use of his or her particular short story in the book. This suggests that
under the GPL if you have a “collective work” of software, consisting of software subject to the GPL and
software that is not subject to the GPL, when distributing the two software programs together both software
programs are subject to the GPL. However, the GPL then states that distributing the software programs on
the same media, comparable to distribution of two short stories in a book, does not require licensing the
non-GPL software under the GPL. The apparent attempt of the GPL to require collective works to be
distributed under the GPL — at least under some undefined circumstances but not others — is one of the
most uncertain aspects of the GPL. The references to collective works in the GPL is a risk that Developers
should consider when they distribute their proprietary software with bundled software subject to the GPL.

11

those situations with a view toward making interoperability available without
violating another’s exclusive rights under copyright.26

Based on these cases, the use of an API or other interface to open
source software by non-open source software is not likely to result in the non-
open source software being considered a derivative work, and therefore subject to
the GPL. However, the answer is not certain. To some extent the answer may
depend on how the software programs actually work together and how much of
the open source software is actually incorporated into the other software program.
To an End User, a company that doesn’t distribute software but uses it solely for
its own in-house purposes, the issues of modification and distribution are not
issues of concern (except for the 1099 labor and subsidiary issues identified
above). However, it is an issue to consider for Developers of software that works
with open source software. The extent to which this is a risk worth taking may be
a function of how the Developer’s software actually interacts with the open source
software.

Handling Patent (and Other) IP Infringement Issues

The GPL handles potential claims of patent or other infringement
in an interesting way. Section 7 of the GPL states what happens if a court ruling
or anything else happens that prevents a licensee from conforming to the GPL.
An example of this occurrence would be if a court rules that a portion of the open
source software is subject to a patent right, thereby precluding the right to
distribute it for free. In that case, the licensee is simply precluded from
distributing the offending code. The licensee is still required to conform to the
GPL. This language is an attempt by the author of the GPL to keep open source
software free from intellectual property claims.27

Handling Certain Countries’ Contrary Laws

Section 8 of the GPL is similar to Section 7, except it deals with
country laws that may be inconsistent with the GPL. In that situation, the original
copyright holder under the GPL may add restrictions that prevent use of the open
source software in that particular country.

Other Provisions

The GPL contains other provisions as well. There are provisions
for periodic updates to the GPL itself. There are provisions for how one

26 Short phrases, which API calls to other software normally are, are afforded relatively less protection
under copyright laws, as are phrases that are limited in the number of different ways they can be actually
expressed (e.g., how many ways can you say “open a file”?). In addition, U.S. courts have given some
leeway to the actual use of expressive (i.e., copyrighted) elements of software when they are used solely to
provide interoperability. In the European Union, reverse engineering for purposes of interoperability is
specifically allowed, subject to certain limits.
27 This hasn’t worked perfectly, as can be seen from recent litigation brought by SCO.

12

incorporates portions of an open source software program into free versions of
other software but that are not subject to the GPL. There are also disclaimers of
warranties and limitations of liability. See the general discussion above for
analysis of those provisions.

Conclusions

If you are an End User that wants to use unmodified open source
software for internal purposes, the GPL gives you very little, if anything, to worry
about. If an End User wants to modify the open source software and use it
internally, then it may worry about the issue of 1099 labor, subsidiary use, and the
risks associated with interoperability with the open source software. However,
many End Users will examine these risks and determine that the gains from using
the open source software are worth the business risks. For those organizations
who embrace the open source software movement and actually contribute their
modifications to the open source movement, the risk is even less.

Developers who want to use the open source software licensed
under the GPL should carefully consider the risks associated with interoperability,
as well as whether the GPL imposes restrictions on the Developer’s proprietary
code as a “collective work” of the open source software. They should specifically
and technically examine how their proprietary software works with the open
source software. Many will also decide that the use of open source software
outweighs the risks; however, because the risks are greater, some are likely to stay
away from open source software.

Lesser General Public License (LGPL) (Version 2.1)

General Conclusions

Under some circumstances, the LGPL allows the open source
software to be used with proprietary software, specifically by linking,28 without
requiring the proprietary software to be licensed under the LGPL. This may allow
software licensed under the LGPL to be used by End Users and Developers
without giving up any proprietary rights in the code. Modifications to the
software licensed under the LGPL itself are still governed by provisions very
similar to the GPL.

The LGPL Generally

The Lesser General Public License29 is probably the most
technically complicated open source license. The reason for this complexity is its
subject matter: the use of libraries by software programs. The LGPL arose

28 Linking occurs as a part of the conversion between source code, written by programmers, and executable
code, useable by computers. Linking takes various separate components of the software, such as modules
and libraries of subroutines, and converts them into an executable program.
29 In earlier versions of the LGPL, it was know as the Library General Public License.

13

because of special considerations related to the use of open source libraries that
are linked with software that is not intended to be licensed under the GPL.

In its Preamble, the LGPL points out that if one takes software and
links it to a library30, the combined work is legally a derivative work of the
library.31 Accordingly, using a library that is subject to the GPL would render the
entire work subject to the GPL.

There are occasions where having the combined work be subject to
the GPL is not in the best interest of the free software movement. First, the free
software movement may want the freeware version of a library or routine to be an
industry standard. In this situation, the freeware versions will be more widely
adopted if it is available for use in proprietary software as well as open source
software. Second, there may be proprietary versions of the routines in the library
that are readily available. In that situation, requiring any software using the open
source routines to be licensed under the GPL reduces the likelihood that the open
source routines will be used, which also seems contrary to the intention of the
open source movement.

The most important distinction to understand when reviewing the
LGPL is the difference between a “work based on the Library” and a “work that
uses the Library.” Generally speaking, a work based on the Library is a work that
modifies the library itself. A work that uses the library is a software program that
is linked with the library, normally during compilation.

Modifications to the Library Itself

A library that is licensed under the LGPL is generally treated in the
same manner as if it were licensed under the GPL. If you distribute the
unmodified library, you must license it in accordance with the LGPL. If you
distribute modifications to the library, then those modifications must also be
distributed in accordance with the LGPL, which requirements are virtually
identical to the GPL, except that there are some special considerations associated
with the nature of libraries that must be considered.32

30 A library is a set of software routines or functions that can be used by calling them rather than writing
that functionality into the software itself. Typically, these routines are “linked” into a software program
when it is compiled.
31 It is also true that the combined work is a derivative work of the software, but being a derivative work of
the library is what causes the issue with the GPL.
32 Section 2.d) of the LGPL provides: “If a facility in the modified Library refers to a function or a table of
data to be supplied by an application program that uses the facility, other than as an argument passed when
the facility is invoked, then you must make a good faith effort to ensure that, in the event an application
does not supply such function or table, the facility still operates, and performs whatever part of its purpose
remains meaningful.”

14

Use of the Library

As stated above, a software program that doesn’t contain the
library still is a derivative work of the library when it is linked and compiled with
it. Portions of the LGPL related to this issue are less than completely clear,
principally regarding the uses only of header information of the library and uses
that entail a small amount of use of the library.33

Section 6 of the LGPL is the relaxation of the normal restriction on
full and free distribution of derivative works. Section 6 contains the difference
between the GPL and the LGPL.

As an exception to the Sections above, you may also combine or link a "work that
uses the Library" with the Library to produce a work containing portions of the
Library, and distribute that work under terms of your choice, provided that the
terms permit modification of the work for the customer's own use and reverse
engineering for debugging such modifications.34

This means that as long as you allow a customer to reverse
engineer for debugging and modify the software for internal use, you can charge a
fee for the software and limit its subsequent distribution. The rights to reverse
engineer and modify the software for internal use are typically not granted under
commercial software licenses; however, even with these limits a Developer may
want to consider using an open source library in its products.

There are some additional requirements, including the following:

� Identifying that the library is being used;

� Placement of copyright notices;

� Providing source code for the library;

� Providing a means to link the library;

33 The confusing language is as follows, with certain editorial references in brackets: “When a ‘work that
uses the Library’ uses material from a header file that is part of the Library, the object code for the work
may be a derivative work of the Library even though the source code is not. Whether this is true is
especially significant [significant for what?] if the work can be linked without the Library, or if the work is
itself a library. The threshold for this to be true is not precisely defined by law [Why is this sentence
necessary?].
If such an object file uses only numerical parameters, data structure layouts and accessors, and small
macros and small inline functions (ten lines or less in length), then the use of the object file is unrestricted,
regardless of whether it is legally a derivative work. (Executables containing this object code plus portions
of the Library will still fall under Section 6.)
Otherwise, if the work is a derivative of the Library [language probably incorrect, as the prior paragraph
seems to give rights even if the work is a derivative work], you may distribute the object code for the work
under the terms of Section 6. Any executables containing that work [not artfully stated] also fall under
Section 6, whether or not they are linked directly with the Library itself.
34 Emphasis supplied.

15

� If not provided, an offer to provide the source code of the library;
and

� Providing certain utility programs needed to reproduce the
executable.

Other Provisions

The LGPL also provides a means for, and restrictions regarding,
use of the LGPL library side-by-side with proprietary libraries. Patent and
country-specific issues are handled in the same manner as the GPL. Just like the
GPL, there are provisions for adopting newer versions of the LGPL as they come
out, instructions for how to obtain exceptions the LGPL, disclaimers of warranty,
and limitations of liability.

Conclusions

Once again, End Users aren’t really impacted by the language of
the LGPL, other than the 1099 labor and subsidiary questions in connection with
linking or modifying the libraries that are subject to the LGPL. Many companies
will find this as an acceptable risk. Developers who use libraries subject to the
LGPL need to decide whether they can live with the requirements of Section 6,
most notably the requirement that the Developer must grant its licensees the right
to modify the code for internal use and reverse engineer for debugging.

Berkeley Software Distribution (BSD)License

The BSD license arose out of the University of California at Berkeley.
The approach taken by the BSD license is much simpler than those taken by the GPL and
the LGPL. It is also less protective of the open source movement and more flexible
toward End Users and Developers. The BSD license consists of the following provisions:

� A copyright notice;

� Requirements that distribution must be accompanied with the
copyright notice, the conditions in the BSD license and the
disclaimers, with some requirements as to where those provisions
are placed;

� A prohibition against using the contributors or affiliated
organizations to endorse or promote the products;

� A disclaimer of warranties;

� A limitation of damages.

That’s it. As you can see, the BSD license gives the software away, but it
does not prevent someone from incorporating the software into a proprietary product.

16

For both the End User and Developer, the use of software subject to the BSD license does
not expose it to the risk that the proprietary product developed using it will result in the
inability to protect and defend its intellectual property rights in the proprietary product.

The MIT License

The MIT license is very similar to the BSD license. The use of software
subject to the MIT license requires a copyright notice, a disclaimer of warranties, and a
limitation of liability. The software license is otherwise unrestricted.

Apache Software License v2.0

In its market niche, Web server software, Apache is the most successful
open source software of all, even more than Linux. In January 2004, Apache software
was used in 67% of the approximately 46 million servers that make Web pages available
on the Internet.35

Apache takes a different approach to open source contributions. Instead of
using the concept of derivative works and copyright law to require contributions to the
open source community, as with the GPL and LGPL, the Apache license provides for the
voluntary designation of contributions to the open source software. Licensees are
therefore given the option whether to create proprietary versions of Apache or contribute
modified code to the Apache open source community.

Other features of the license are as follows:

� The Apache license handles the subsidiary issue. Subsidiaries are
allowed to use the software as if they are the licensee.

� Linking is addressed by not covering it under the Apache license
and in a manner suggesting that linking is allowed.

� There are separate copyright and patent licenses, which is a little
unusual even for proprietary license agreements. The patent
license only licenses those patents that would otherwise be
infringed by the particular licensor’s contributions or that would be
infringed by the combination of the licensor’s contributions and
the other parts of the Apache software. This makes it more legally
comfortable for contributors to contribute.

� If licensee institutes a claim of infringement, even as a defense,
then license agreement terminates.

� Adding to the software requires attribution. This may help if
infringement claims occur.

35 See http://news.com.com/2100-7344-5139511.html.

17

http://news.com.com/2100-7344-5139511.html

� Unlike other disclaimers of warranty in open source licenses,
implied warranties of title and noninfringement are also
disclaimed.

� Contributors can add additional license terms. This means that a
contributor can modify the code and then sell it as a proprietary
package.

The Apache license is well-constructed, relatively easy to read, and
provides a different approach to open source licensing from other open source software
licenses.

Infringement Liability

The laws regarding patent and copyright apply to open source software just as
they apply to proprietary software. As mentioned above, copyright infringement occurs
when someone violates the exclusive rights of a copyright holder, usually by making
copies, making derivative works, or by distributing someone else’s copyrighted work.
Patent infringement occurs when someone makes, uses, or sells something that is a
machine, method, or process patented by someone else.36, 37 In both patent and copyright
claims, there is no requirement that the alleged infringer actually have knowledge of the
copyright or patent or the infringement itself.38 Accordingly, copyright or patent
infringement claims can typically be brought against downstream users of the technology,
such as End Users and Developers.

The analysis of potential infringement liability below examines whether there are
any differences between proprietary software developed and licensed by a single software
company or open source software on the following key issues: (i) the likelihood that the
software created will contain information that could cause an infringement, (ii) the
likelihood that the infringed-upon entity will discover the infringement, (iii) the
likelihood that an infringement lawsuit would be brought against an End User or
Developer, and (iv) the likelihood that the software developer will undertake the defense
and indemnify for any damages suffered by the End User or Developer.

The true question in this situation is whether the infringement risks to an End
User and Developer are different between open source software and proprietary software.
If the risks are huge, but quantitatively and qualitatively the same, then there’s no reason
to choose one over the other due to the risk. The other question is how much is it worth,
in dollars, to your company to get an infringement indemnity?

36 Both the descriptions of copyright and patent infringement have been simplified to avoid unnecessary
detail.
37 Trade secret misappropriation is another possible claim; however, trade secret misappropriation claims
against an End User or Developer would normally require a showing that the End User or Developer knew
or had reason to know that the information was obtained inappropriately. Because this situation would not
normally be the case in an open source context, trade secret misappropriation is not addressed in this white
paper.
38 Knowledge of the infringement can be quite important in the amount of damages awarded, however.

18

Chances of Infringing Materials Being Involved

Open source software is frequently developed by multiple persons who
work for multiple employers, who provide code on a more or less anonymous basis (at
least to the End User or Developer), who are relatively judgment proof, who provide the
code for free, who at least partially subscribe to the notion that software must be free, and
who know that they are providing it without any infringement warranty. Software
companies, especially large ones, typically have procedures in place to reduce the risk
that another’s code gets into the software company’s proprietary code. On balance, it is
more likely that open source software will have copyright problems than a software
company’s proprietary software.

The above scenario is not true for all open source software providers.
Some open source software is developed using fewer resources and with tighter controls.
Others started from an open source foundation but then took more proprietary control of
the code, even if it is still licensed for free. Accordingly, it is important to examine how
the particular open source software was and continues to be developed.

While similar, patent infringement risks are less of a contrast between the
open source community and purveyors of proprietary software. Some patent risks are
simply unknowable, because the patent applications are not disclosed to the public for a
period of time. Accordingly, there can be a future patent infringement that does not
appear until after the code has been created, even assuming that the software company
did a full patent search. In addition, many software companies don’t do full patent
searches. Even if the information is available, patents may still exist that cause problems.
Therefore, while there is likely to be some difference between the patent infringement
risks of using proprietary software and open source software, it is not necessarily that
great a difference.

Risk of Getting Caught

In those situations where source code is available, it can be easier to
determine whether someone has infringed on your copyright or patent. Making only
object code available tends to hide some sins. Since source code is usually available with
open source software and usually not available for proprietary software, the risks of
getting caught can be greater with open source software.

Likelihood of Action Against End User or Developer

It is hard to talk about infringement risks without addressing SCO v. IBM.
As a part of SCO’s strategy, SCO has asserted claims against some End Users and has
made inquiries against others regarding their use of Linux, seeking to obtain royalties on
the use of Linux. One may contrast that to the multiple patent claims made against
Microsoft products, where at least to the author’s knowledge no End User has been sued
or paid anything to resolve such claims. SCO v. IBM suggests that End Users using open
source software are more likely to be sued than End Users licensing proprietary software,

19

at least for very large End Users.39 It is less clear that smaller End Users and Developers
are exposed to the same level of risk as very large End Users.

If a claim of copyright or patent infringement is available, it stands to
reason that there is a greater risk of a claim being made with the use of open source
software. The reasons are that the actual infringer is harder to find and more likely to be
judgment proof. Why sue an End User when Microsoft has billions in the bank?

Some companies view the open source movement as a threat to the market
position of their proprietary products. This is most evident in the relationship between
Linux and Microsoft’s Windows line of products. In 2003, Microsoft paid SCO a $16.6
million license fee.40 Some sources believe that Microsoft is seeking to provide monetary
assistance to SCO in order for SCO to pursue its litigation against IBM and End Users. If
there are powerful companies who have a vested interest in seeing open source software
fail in the marketplace, the risk of intellectual property claims is increased.

Who Will Defend and Indemnify?

In some open source situations, there is no one party that realistically can
defend an infringement claim or pay any judgments that arise. Accordingly, the risk of
not having a party to defend and indemnify is greater for open source software than with
proprietary software. However, it is easy to overstate this risk. On average, patent
infringement lawsuits cost about $3 million just to defend.41 It takes a software company
of some size to absorb this kind of litigation. In addition, the largest software companies
don’t always fully indemnify for infringement risk, meaning that an End User or
Developer may still be left with the responsibility to defend and pay any settlements and
judgments. As with all indemnifications, indemnities are only valuable to the extent that
a party is willing to give one and is able to pay when the time comes.

Also, some open source providers will provide indemnifications for the
products. Some are large enough that they will insist on resolving an infringement claim,
knowing that the sale of new licenses and services will be impacted if the claims are not
resolved. Therefore, whether there will be one or more entities who will defend an
infringement claim and make it go away will vary depending on the open source
developers involved, how the particular open source software is developed and
maintained, and how much an economic stake the open source vendors have in the
success of the open source software in question.

39 Letters from SCO to large End Users were apparently sent to the Fortune 1000 and the Global 500. See
http://en.wikipedia.org/wiki/SCO_v._IBM_Linux_lawsuit.
40 See www.computerworld.com/softwaretopics/os/linux/story/0,10801,91145,00.html.
41 AIPLA Report of Economic Survey 2001, Median of Estimated of Total Cost, Through End of
Discovery and Inclusive, in a Patent Infringement Suit, with more than $25 Million at Stake, Table 22, p.
85.

20

http://en.wikipedia.org/wiki/SCO_v._IBM_Linux_lawsuit
http://www.computerworld.com/softwaretopics/os/linux/story/0,10801,91145,00.html

SCO v. IBM

There are lessons to be learned in the SCO v. IBM42 case and the related
cases involving Novell, DaimlerChrysler, and AutoZone. Unfortunately, the claims made
by the various parties against each other are both numerous and diverse. In addition,
some of the most important claims have not been publicly fleshed out. Currently, it is not
clear how good a case each party has against the other.

There is one strategy in these cases that is important to consider in
connection with an End User or Developer examining its own risks, however. Because
copyright law only protects the way ideas are expressed rather than the ideas themselves,
there is no code in Linux that can’t be rewritten to avoid an ongoing copyright claim.
From the claims made, the estimates of the number of lines of code that are infringing
range from a few hundred to a few million.43

Suppose for a moment that there are one million lines of offending code.
If the open source community knew which lines of code were offending, how long would
it take them to rewrite those lines of code? As already noted, it was estimated that
thousands of programmers participated in the development of Linux. From that estimate,
let’s suppose that the open source community can marshal five thousand programmers to
work on the project, a conservative number. This means that each programmer would
need to write an average of 200 lines of code to fix the problem. How long would that
take? Of course, it isn’t nearly that simple. The task wouldn’t break down into equal
parts, and there’s plenty of testing, vetting of code and the like that would need to be
done. The point is, however, that even if it’s a million lines of infringing code, once the
SCO litigation is considered credible by the open source community and the offending
code is disclosed, it won’t be long before a revised version of Linux is available that will
be free of offending SCO code. This analysis points to a strength of the open source
community: strength in numbers. This strength means that the risk of ongoing copyright
infringement is lower than many may have otherwise thought.44

Monetizing the Risk; An Economic Analysis

Legal risks, such as the risk of future infringement claims, should be
balanced against other economics. Suppose an End User is evaluating whether to license
one software package versus another. All the business and legal terms are the same
except for two factors: one software company won’t indemnify for infringements at all
but offers its software for $100,000 less. How much is a software indemnity worth to
your company? If your company can save a few million dollars by using open source
software over proprietary software, is it worth the clear economic savings to take the risk

42 For a good summary of these cases, see http://en.wikipedia.org/wiki/SCO_v._IBM_Linux_lawsuit. Note
that Wikipedia is an encyclopedia, but it is an open source encyclopedia. Accordingly, its rendition of the
facts may not be completely without bias.
43 The disparity of the estimated quantity of infringement is one of the reasons that the claims are so hard to
evaluate.
44 In addition, it shows that SCO’s strategy should be to delay the disclosure of the alleged offending code
for as long as possible.

21

http://en.wikipedia.org/wiki/SCO_v._IBM_Linux_lawsuit

of the possibility of being sued in the future for infringement? If you had to buy your
way out of infringement trouble by paying for a license in the future, would you still
come out ahead economically?

For most companies, this is the analysis that is most important. Many
companies will decide that the cheaper cost of open source software justifies taking some
increased risk on the infringement side. Others who are less risk tolerant may not. It
may be helpful to go through the analysis outlined above before making any decisions,
because different open source software will present different risk postures.

Other Issues

Control

Open source software is really easy to download and use. A software
programmer can frequently identify open source software, download it, and start working
with it in a matter of minutes. When comparing that speed with a normal corporate
purchasing processes, it is easy to see why programmers like open source. In addition,
the open source community frequently provides solutions to specific problems, provides
reference information to the software’s use, and generally supports the work of a
programmer who uses open source software. It is easy to feel a part of a community
when using open source software.

To avoid the irresistible call of the Sirens — and to resist the temptation to
steer toward certain death — Odysseus placed wax in the ears of his crew and had
himself tied to the mast. Similarly, some corporate control needs to be in place to
manage the use of open source software. The basic principles of control are relatively
straightforward:

• educate programmers as to when using open source software is
appropriate and when not;

• identify when programmers are trying to use open source software;

• determine what applications or programming tasks the programmers
want to use the open source software for;

• review the applicable open source license agreements;

• determine whether the uses are consistent with the limitations of the
open source software license;

• assess the infringement and other risks of using open source software;

• decide whether to use the open source software or not;

• monitor or otherwise control whether the open source software is used
for other projects; and

22

• monitor compliance with any policies developed to address any of the
controls above.

While the basics of these controls are easy to state, controlling the use of
open source software can be a significant endeavor, especially for large organizations and
organizations with less of an orientation toward process. What these controls look like
and how they are constructed will vary widely depending on the size, culture and
organization of the company.

Import Restrictions

The U.S. government places certain restrictions on the import of products
and services from rogue countries. For example, one cannot purchase products and
services from Syria or Cuba. Because open source software can be developed by
multiple persons on a world-wide basis, it is possible that the use of open source software
is potentially a violation of U.S. import regulations? The answer is probably yes.
However, the risk would seem to be low that U.S. import laws would be enforced to this
level. This risk obviously goes up to the extent that the software was principally
developed by programmers from rogue countries. The author is aware of one anecdotal
example where a software company was not allowed to license its software to the U.S.
Department of Homeland Security because it was principally developed in a rogue
nation, for security reasons. This anecdote did not involve sanctions for violations of
import restrictions; the deal just fell through.

Conclusion

Hopefully, this white paper has given you information that makes it easier for you
to make an informed choice whether to use open source software and under what
circumstances. As you can see, the risks from a legal standpoint are generally the
following:

� 1099 labor,

� subsidiaries,

� having your own software treated as a derivative work or collective
work of the open source software, and

� infringement liability.

Your risk posture is affected by whether you are an End User who uses
unmodified open source software, an End User who uses modified open source software,
or a Developer. The particular open source license will impact your risk, as will the way
your proprietary software interfaces with the open source software. By balancing the
risks under your circumstances, the risks under the particular open source license
agreement, your comfort with these risks, and the economic differences between the
available choices, you should be able to make an informed choice whether using open
source software is right for you. In any event, however, you should seriously consider

23

24

implementing controls to monitor and manage the use of open source software in your
company.

	History of Open Source
	The open source movement got its start in the ear
	There is some brilliance to the design of the GPL. One might think that a free software movement would seek to avoid copyright laws, the principal intellectual property law that restricts the free use of software and allows its commercial exploitation.
	Probably the most important development in the open source movement has been the development of Linux, a popular open source operating system. Linus Torvalds, the developer of the Linux kernel, used the GPL as the licensing scheme for Linux. In part be
	Businesses have grown to provide services around Linux. In addition, a significant number of other individuals and companies have adopted the open source model to develop their products.
	It is important to note that open source is not a
	Open Source Licenses Generally
	Some open source license agreements seem to have been drafted by engineers as well as lawyers. These licenses can display a technical sophistication that usually does not exist in run-of-the mill license agreements. Even for lawyers who practice regula
	Copyright Issues

	Copyright law gives specific rights to holders of
	to make copies of the work,
	to prepare derivative works of the work, and
	to distribute the work.
	This legal structure is critically important to understand. It is the basis for the sale of books, music, movies, and software. As long as the rights are appropriately reserved by the copyright holder, the sale or license of a book, a CD, a DVD, or sof
	These concepts serve as the basis for some open s
	Generally, an open source license will place requirements on the user in order for the user to have the right to copy, distribute, or create derivative works of the software. There are a number of types of restrictions that can be found in open source l
	Requirements regarding the placement of copyright notices on copies;
	Requirements that notices be given of modifications to the software;
	Requirements that the software either be or not be attributed to certain authors;
	Requirements that certain disclaimers of liability be included in any subsequent license;
	Requirements that certain limitations of damages be included in any subsequent license;
	Requirements that the software and all modifications be distributed only with the source code or an offer to provide the source code for free, other than a copying fee; and
	Requirements that the object code be distributed for free or only for a reasonable copying charge.
	The last two requirements above, the distribution of modified source and object code for only a copy fee, are normally what give companies the most concern. This issue will be explored in more detail in the discussion of the GPL below. For the reasons
	Contract Considerations

	Most open source licenses contain other provisions that are harder to characterize as some exclusive right that the copyright holder is retaining rather than giving away. Examples of these include limitations of liability and disclaimers of implied warr
	It is not clear from the way open source software and their corresponding licenses are frequently distributed that a binding contract actually exists.� Having an enforceable contract normally requires parties to actually agree to something;� a contract
	For an End User, this is not much of an issue. An End User would view the unenforceability of a limitation of liability clause or disclaimer of warranties as a good thing.
	Developers are similarly helped rather than hindered. However, Developers should consider this issue when they distribute the open source to a customer. The simple solution for a Developer is to create an enforceable contract when it delivers the open
	Limitation of Liability Clause

	The disclaimers of liability in open source licenses typically disclaim all damages, not just the more standard disclaimers of consequential and special damages. One can argue that an otherwise valid contract is rendered invalid when one party has no ri
	Other Implied Warranties

	There may be more implied warranties than merchantability and fitness for purpose. There are plausible arguments that licenses of some software also come with implied warranties of title and noninfringement. Not all open source licenses disclaim these
	UCITA

	Virginia and Maryland have adopted the Uniform Co
	Parties to License

	Because most open source software is developed by multiple people and companies, determining who the licensor actually is can be difficult, if not impossible, to determine. The open source licenses reviewed in this white paper do not contain assignments
	The existence of multiple contributors and the lack of a central licensor has at least a couple of ramifications. First, practically there may be no person or organization that can sue an End User or Developer who violates the terms of an open source li
	Specific Open Source Licenses
	GNU General Public License (GPL)
	General Conclusions

	The GPL is the most important open source license to understand, simply because much open source software is licensed under it. Linux is licensed under the GPL. As of this writing, the SourceForge Web site� has over 38,000 software packages available f
	Generally speaking, under the GPL any modifications of the code that you create and distribute are required to be distributed to all others in source code and object code form for only a fee for copying. Accordingly, and subject to the qualifications di
	
	The GPL Generally

	One of the most important features of the GPL is
	In its general provisions, the GPL mentions restrictions on copying, distribution, and modification. When specific requirements are mentioned, however, they almost always address what happens upon distribution or modification, or both, and not what happ
	Section 1 of the GPL governs distributions of unmodified copies of the software. While there are requirements regarding copyright notices, disclaimers, providing copies of the GPL with the software and the like that must be complied with, there are no r
	
	Modifications and Distribution

	Section 2 of the GPL addresses modifications to t
	For an End User who merely uses the software without modification, logically there can be no problem with this requirement. Indeed, even if an End User makes modifications to the software, Section 2 only comes into effect when there is a distribution or
	There are two caveats to the above, however. Cas
	The second caveat is a variation of the first. S
	These caveats point out issues that exist with mo
	Sophisticated end users seek to add these rights
	
	What’s a Modification?

	To understand the implications of Section 2 of the GPL, an understanding of the concept of derivative works is required. As stated above, the right to create derivative works is one of the exclusive rights held by the owner of a copyright. Whether a wo
	
	How Modifications are Handled

	Section 2 states that if you modify the software (and then distribute it), then you are subject to the requirements of Section 2. These requirements include the following:
	Providing a notice that the software has been changed and when;
	Distributing the modified software “as a whole at
	Taking other actions in the event that certain operations automatically occur when the software is loaded, such as providing appropriate copyright notices on splash screens.
	The GPL then takes three paragraphs to explain wh
	The GPL goes on to specify that distributing open
	Section 3 of the GPL provides requirements related to the obligation to provide or offer to provide the source code of the software that is subject to the GPL along with any distribution of the object code.
	
	Handling of API’s and Other Interfaces

	Software programs talk to each other. For example, in the event that an application program wants to save a file to a hard disk, the application program sends a command to the operating system software that in turn performs that operation. In order for
	If software uses the API or other interface of open source software, does the software become a derivative work of the open source software? This is one of the unanswered questions of the GPL; there are no express provisions of the GPL that address inte
	Based on these cases, the use of an API or other interface to open source software by non-open source software is not likely to result in the non-open source software being considered a derivative work, and therefore subject to the GPL. However, the ans
	
	Handling Patent (and Other) IP Infringement Issues

	The GPL handles potential claims of patent or other infringement in an interesting way. Section 7 of the GPL states what happens if a court ruling or anything else happens that prevents a licensee from conforming to the GPL. An example of this occurren
	
	Handling Certain Countries’ Contrary Laws

	Section 8 of the GPL is similar to Section 7, except it deals with country laws that may be inconsistent with the GPL. In that situation, the original copyright holder under the GPL may add restrictions that prevent use of the open source software in th
	
	Other Provisions

	The GPL contains other provisions as well. There are provisions for periodic updates to the GPL itself. There are provisions for how one incorporates portions of an open source software program into free versions of other software but that are not subj
	
	Conclusions

	If you are an End User that wants to use unmodified open source software for internal purposes, the GPL gives you very little, if anything, to worry about. If an End User wants to modify the open source software and use it internally, then it may worry
	Developers who want to use the open source softwa
	Lesser General Public License (LGPL) (Version 2.1)
	General Conclusions

	Under some circumstances, the LGPL allows the open source software to be used with proprietary software, specifically by linking,� without requiring the proprietary software to be licensed under the LGPL. This may allow software licensed under the LGPL
	
	The LGPL Generally

	The Lesser General Public License� is probably the most technically complicated open source license. The reason for this complexity is its subject matter: the use of libraries by software programs. The LGPL arose because of special considerations rela
	In its Preamble, the LGPL points out that if one takes software and links it to a library�, the combined work is legally a derivative work of the library.� Accordingly, using a library that is subject to the GPL would render the entire work subject to t
	There are occasions where having the combined work be subject to the GPL is not in the best interest of the free software movement. First, the free software movement may want the freeware version of a library or routine to be an industry standard. In t
	The most important distinction to understand when
	
	Modifications to the Library Itself

	A library that is licensed under the LGPL is generally treated in the same manner as if it were licensed under the GPL. If you distribute the unmodified library, you must license it in accordance with the LGPL. If you distribute modifications to the li
	
	Use of the Library

	As stated above, a software program that doesn’t
	Section 6 of the LGPL is the relaxation of the normal restriction on full and free distribution of derivative works. Section 6 contains the difference between the GPL and the LGPL.
	This means that as long as you allow a customer to reverse engineer for debugging and modify the software for internal use, you can charge a fee for the software and limit its subsequent distribution. The rights to reverse engineer and modify the softwa
	There are some additional requirements, including the following:
	Identifying that the library is being used;
	Placement of copyright notices;
	Providing source code for the library;
	Providing a means to link the library;
	If not provided, an offer to provide the source code of the library; and
	Providing certain utility programs needed to reproduce the executable.
	
	Other Provisions

	The LGPL also provides a means for, and restrictions regarding, use of the LGPL library side-by-side with proprietary libraries. Patent and country-specific issues are handled in the same manner as the GPL. Just like the GPL, there are provisions for a
	
	Conclusions

	Once again, End Users aren’t really impacted by t
	Berkeley Software Distribution (BSD)License

	The BSD license arose out of the University of California at Berkeley. The approach taken by the BSD license is much simpler than those taken by the GPL and the LGPL. It is also less protective of the open source movement and more flexible toward End U
	A copyright notice;
	Requirements that distribution must be accompanied with the copyright notice, the conditions in the BSD license and the disclaimers, with some requirements as to where those provisions are placed;
	A prohibition against using the contributors or affiliated organizations to endorse or promote the products;
	A disclaimer of warranties;
	A limitation of damages.
	That’s it. As you can see, the BSD license gives
	The MIT License

	The MIT license is very similar to the BSD license. The use of software subject to the MIT license requires a copyright notice, a disclaimer of warranties, and a limitation of liability. The software license is otherwise unrestricted.
	Apache Software License v2.0

	In its market niche, Web server software, Apache is the most successful open source software of all, even more than Linux. In January 2004, Apache software was used in 67% of the approximately 46 million servers that make Web pages available on the Inte
	Apache takes a different approach to open source contributions. Instead of using the concept of derivative works and copyright law to require contributions to the open source community, as with the GPL and LGPL, the Apache license provides for the volun
	Other features of the license are as follows:
	The Apache license handles the subsidiary issue. Subsidiaries are allowed to use the software as if they are the licensee.
	Linking is addressed by not covering it under the Apache license and in a manner suggesting that linking is allowed.
	There are separate copyright and patent licenses,
	If licensee institutes a claim of infringement, even as a defense, then license agreement terminates.
	Adding to the software requires attribution. This may help if infringement claims occur.
	Unlike other disclaimers of warranty in open source licenses, implied warranties of title and noninfringement are also disclaimed.
	Contributors can add additional license terms. This means that a contributor can modify the code and then sell it as a proprietary package.
	The Apache license is well-constructed, relatively easy to read, and provides a different approach to open source licensing from other open source software licenses.
	Infringement Liability
	The laws regarding patent and copyright apply to open source software just as they apply to proprietary software. As mentioned above, copyright infringement occurs when someone violates the exclusive rights of a copyright holder, usually by making copie
	The analysis of potential infringement liability below examines whether there are any differences between proprietary software developed and licensed by a single software company or open source software on the following key issues: (i) the likelihood
	The true question in this situation is whether th
	Chances of Infringing Materials Being Involved

	Open source software is frequently developed by multiple persons who work for multiple employers, who provide code on a more or less anonymous basis (at least to the End User or Developer), who are relatively judgment proof, who provide the code for fr
	The above scenario is not true for all open source software providers. Some open source software is developed using fewer resources and with tighter controls. Others started from an open source foundation but then took more proprietary control of the c
	While similar, patent infringement risks are less of a contrast between the open source community and purveyors of proprietary software. Some patent risks are simply unknowable, because the patent applications are not disclosed to the public for a perio
	Risk of Getting Caught

	In those situations where source code is available, it can be easier to determine whether someone has infringed on your copyright or patent. Making only object code available tends to hide some sins. Since source code is usually available with open sou
	Likelihood of Action Against End User or Developer

	It is hard to talk about infringement risks witho
	If a claim of copyright or patent infringement is available, it stands to reason that there is a greater risk of a claim being made with the use of open source software. The reasons are that the actual infringer is harder to find and more likely to be j
	Some companies view the open source movement as a
	Who Will Defend and Indemnify?

	In some open source situations, there is no one party that realistically can defend an infringement claim or pay any judgments that arise. Accordingly, the risk of not having a party to defend and indemnify is greater for open source software than with
	Also, some open source providers will provide indemnifications for the products. Some are large enough that they will insist on resolving an infringement claim, knowing that the sale of new licenses and services will be impacted if the claims are not re
	SCO v. IBM

	There are lessons to be learned in the SCO v. IBM� case and the related cases involving Novell, DaimlerChrysler, and AutoZone. Unfortunately, the claims made by the various parties against each other are both numerous and diverse. In addition, some of
	There is one strategy in these cases that is important to consider in connection with an End User or Developer examining its own risks, however. Because copyright law only protects the way ideas are expressed rather than the ideas themselves, there is n
	Suppose for a moment that there are one million lines of offending code. If the open source community knew which lines of code were offending, how long would it take them to rewrite those lines of code? As already noted, it was estimated that thousands
	Monetizing the Risk; An Economic Analysis

	Legal risks, such as the risk of future infringement claims, should be balanced against other economics. Suppose an End User is evaluating whether to license one software package versus another. All the business and legal terms are the same except for
	For most companies, this is the analysis that is most important. Many companies will decide that the cheaper cost of open source software justifies taking some increased risk on the infringement side. Others who are less risk tolerant may not. It may
	Other Issues
	Control

	Open source software is really easy to download and use. A software programmer can frequently identify open source software, download it, and start working with it in a matter of minutes. When comparing that speed with a normal corporate purchasing pro
	To avoid the irresistible call of the Sirens — an
	educate programmers as to when using open source software is appropriate and when not;
	identify when programmers are trying to use open source software;
	determine what applications or programming tasks the programmers want to use the open source software for;
	review the applicable open source license agreements;
	determine whether the uses are consistent with the limitations of the open source software license;
	assess the infringement and other risks of using open source software;
	decide whether to use the open source software or not;
	monitor or otherwise control whether the open source software is used for other projects; and
	monitor compliance with any policies developed to address any of the controls above.
	While the basics of these controls are easy to state, controlling the use of open source software can be a significant endeavor, especially for large organizations and organizations with less of an orientation toward process. What these controls look li
	Import Restrictions

	The U.S. government places certain restrictions on the import of products and services from rogue countries. For example, one cannot purchase products and services from Syria or Cuba. Because open source software can be developed by multiple persons on
	Conclusion
	Hopefully, this white paper has given you information that makes it easier for you to make an informed choice whether to use open source software and under what circumstances. As you can see, the risks from a legal standpoint are generally the following
	1099 labor,
	subsidiaries,
	having your own software treated as a derivative work or collective work of the open source software, and
	infringement liability.
	Your risk posture is affected by whether you are an End User who uses unmodified open source software, an End User who uses modified open source software, or a Developer. The particular open source license will impact your risk, as will the way your pro

